3.184 \(\int \frac{x^3 \tan ^{-1}(a x)}{(c+a^2 c x^2)^2} \, dx\)

Optimal. Leaf size=133 \[ -\frac{i \text{PolyLog}\left (2,1-\frac{2}{1+i a x}\right )}{2 a^4 c^2}-\frac{x}{4 a^3 c^2 \left (a^2 x^2+1\right )}+\frac{\tan ^{-1}(a x)}{2 a^4 c^2 \left (a^2 x^2+1\right )}-\frac{i \tan ^{-1}(a x)^2}{2 a^4 c^2}-\frac{\tan ^{-1}(a x)}{4 a^4 c^2}-\frac{\log \left (\frac{2}{1+i a x}\right ) \tan ^{-1}(a x)}{a^4 c^2} \]

[Out]

-x/(4*a^3*c^2*(1 + a^2*x^2)) - ArcTan[a*x]/(4*a^4*c^2) + ArcTan[a*x]/(2*a^4*c^2*(1 + a^2*x^2)) - ((I/2)*ArcTan
[a*x]^2)/(a^4*c^2) - (ArcTan[a*x]*Log[2/(1 + I*a*x)])/(a^4*c^2) - ((I/2)*PolyLog[2, 1 - 2/(1 + I*a*x)])/(a^4*c
^2)

________________________________________________________________________________________

Rubi [A]  time = 0.162915, antiderivative size = 133, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.4, Rules used = {4964, 4920, 4854, 2402, 2315, 4930, 199, 205} \[ -\frac{i \text{PolyLog}\left (2,1-\frac{2}{1+i a x}\right )}{2 a^4 c^2}-\frac{x}{4 a^3 c^2 \left (a^2 x^2+1\right )}+\frac{\tan ^{-1}(a x)}{2 a^4 c^2 \left (a^2 x^2+1\right )}-\frac{i \tan ^{-1}(a x)^2}{2 a^4 c^2}-\frac{\tan ^{-1}(a x)}{4 a^4 c^2}-\frac{\log \left (\frac{2}{1+i a x}\right ) \tan ^{-1}(a x)}{a^4 c^2} \]

Antiderivative was successfully verified.

[In]

Int[(x^3*ArcTan[a*x])/(c + a^2*c*x^2)^2,x]

[Out]

-x/(4*a^3*c^2*(1 + a^2*x^2)) - ArcTan[a*x]/(4*a^4*c^2) + ArcTan[a*x]/(2*a^4*c^2*(1 + a^2*x^2)) - ((I/2)*ArcTan
[a*x]^2)/(a^4*c^2) - (ArcTan[a*x]*Log[2/(1 + I*a*x)])/(a^4*c^2) - ((I/2)*PolyLog[2, 1 - 2/(1 + I*a*x)])/(a^4*c
^2)

Rule 4964

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[1/e, Int[
x^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^p, x], x] - Dist[d/e, Int[x^(m - 2)*(d + e*x^2)^q*(a + b*Arc
Tan[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IntegersQ[p, 2*q] && LtQ[q, -1] && IGtQ[m
, 1] && NeQ[p, -1]

Rule 4920

Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> -Simp[(I*(a + b*ArcTan
[c*x])^(p + 1))/(b*e*(p + 1)), x] - Dist[1/(c*d), Int[(a + b*ArcTan[c*x])^p/(I - c*x), x], x] /; FreeQ[{a, b,
c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0]

Rule 4854

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> -Simp[((a + b*ArcTan[c*x])^p*Lo
g[2/(1 + (e*x)/d)])/e, x] + Dist[(b*c*p)/e, Int[((a + b*ArcTan[c*x])^(p - 1)*Log[2/(1 + (e*x)/d)])/(1 + c^2*x^
2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0]

Rule 2402

Int[Log[(c_.)/((d_) + (e_.)*(x_))]/((f_) + (g_.)*(x_)^2), x_Symbol] :> -Dist[e/g, Subst[Int[Log[2*d*x]/(1 - 2*
d*x), x], x, 1/(d + e*x)], x] /; FreeQ[{c, d, e, f, g}, x] && EqQ[c, 2*d] && EqQ[e^2*f + d^2*g, 0]

Rule 2315

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> -Simp[PolyLog[2, 1 - c*x]/e, x] /; FreeQ[{c, d, e}, x] &
& EqQ[e + c*d, 0]

Rule 4930

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[((d + e*x^2)^
(q + 1)*(a + b*ArcTan[c*x])^p)/(2*e*(q + 1)), x] - Dist[(b*p)/(2*c*(q + 1)), Int[(d + e*x^2)^q*(a + b*ArcTan[c
*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[e, c^2*d] && GtQ[p, 0] && NeQ[q, -1]

Rule 199

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^3 \tan ^{-1}(a x)}{\left (c+a^2 c x^2\right )^2} \, dx &=-\frac{\int \frac{x \tan ^{-1}(a x)}{\left (c+a^2 c x^2\right )^2} \, dx}{a^2}+\frac{\int \frac{x \tan ^{-1}(a x)}{c+a^2 c x^2} \, dx}{a^2 c}\\ &=\frac{\tan ^{-1}(a x)}{2 a^4 c^2 \left (1+a^2 x^2\right )}-\frac{i \tan ^{-1}(a x)^2}{2 a^4 c^2}-\frac{\int \frac{1}{\left (c+a^2 c x^2\right )^2} \, dx}{2 a^3}-\frac{\int \frac{\tan ^{-1}(a x)}{i-a x} \, dx}{a^3 c^2}\\ &=-\frac{x}{4 a^3 c^2 \left (1+a^2 x^2\right )}+\frac{\tan ^{-1}(a x)}{2 a^4 c^2 \left (1+a^2 x^2\right )}-\frac{i \tan ^{-1}(a x)^2}{2 a^4 c^2}-\frac{\tan ^{-1}(a x) \log \left (\frac{2}{1+i a x}\right )}{a^4 c^2}+\frac{\int \frac{\log \left (\frac{2}{1+i a x}\right )}{1+a^2 x^2} \, dx}{a^3 c^2}-\frac{\int \frac{1}{c+a^2 c x^2} \, dx}{4 a^3 c}\\ &=-\frac{x}{4 a^3 c^2 \left (1+a^2 x^2\right )}-\frac{\tan ^{-1}(a x)}{4 a^4 c^2}+\frac{\tan ^{-1}(a x)}{2 a^4 c^2 \left (1+a^2 x^2\right )}-\frac{i \tan ^{-1}(a x)^2}{2 a^4 c^2}-\frac{\tan ^{-1}(a x) \log \left (\frac{2}{1+i a x}\right )}{a^4 c^2}-\frac{i \operatorname{Subst}\left (\int \frac{\log (2 x)}{1-2 x} \, dx,x,\frac{1}{1+i a x}\right )}{a^4 c^2}\\ &=-\frac{x}{4 a^3 c^2 \left (1+a^2 x^2\right )}-\frac{\tan ^{-1}(a x)}{4 a^4 c^2}+\frac{\tan ^{-1}(a x)}{2 a^4 c^2 \left (1+a^2 x^2\right )}-\frac{i \tan ^{-1}(a x)^2}{2 a^4 c^2}-\frac{\tan ^{-1}(a x) \log \left (\frac{2}{1+i a x}\right )}{a^4 c^2}-\frac{i \text{Li}_2\left (1-\frac{2}{1+i a x}\right )}{2 a^4 c^2}\\ \end{align*}

Mathematica [A]  time = 0.121025, size = 77, normalized size = 0.58 \[ \frac{4 i \text{PolyLog}\left (2,-e^{2 i \tan ^{-1}(a x)}\right )+4 i \tan ^{-1}(a x)^2-\sin \left (2 \tan ^{-1}(a x)\right )+2 \tan ^{-1}(a x) \left (\cos \left (2 \tan ^{-1}(a x)\right )-4 \log \left (1+e^{2 i \tan ^{-1}(a x)}\right )\right )}{8 a^4 c^2} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x^3*ArcTan[a*x])/(c + a^2*c*x^2)^2,x]

[Out]

((4*I)*ArcTan[a*x]^2 + 2*ArcTan[a*x]*(Cos[2*ArcTan[a*x]] - 4*Log[1 + E^((2*I)*ArcTan[a*x])]) + (4*I)*PolyLog[2
, -E^((2*I)*ArcTan[a*x])] - Sin[2*ArcTan[a*x]])/(8*a^4*c^2)

________________________________________________________________________________________

Maple [B]  time = 0.095, size = 257, normalized size = 1.9 \begin{align*}{\frac{\arctan \left ( ax \right ) \ln \left ({a}^{2}{x}^{2}+1 \right ) }{2\,{a}^{4}{c}^{2}}}+{\frac{\arctan \left ( ax \right ) }{2\,{a}^{4}{c}^{2} \left ({a}^{2}{x}^{2}+1 \right ) }}-{\frac{x}{4\,{a}^{3}{c}^{2} \left ({a}^{2}{x}^{2}+1 \right ) }}-{\frac{\arctan \left ( ax \right ) }{4\,{a}^{4}{c}^{2}}}+{\frac{{\frac{i}{4}}\ln \left ({a}^{2}{x}^{2}+1 \right ) \ln \left ( ax-i \right ) }{{a}^{4}{c}^{2}}}-{\frac{{\frac{i}{8}} \left ( \ln \left ( ax-i \right ) \right ) ^{2}}{{a}^{4}{c}^{2}}}-{\frac{{\frac{i}{4}}\ln \left ( ax-i \right ) \ln \left ( -{\frac{i}{2}} \left ( ax+i \right ) \right ) }{{a}^{4}{c}^{2}}}-{\frac{{\frac{i}{4}}{\it dilog} \left ( -{\frac{i}{2}} \left ( ax+i \right ) \right ) }{{a}^{4}{c}^{2}}}-{\frac{{\frac{i}{4}}\ln \left ({a}^{2}{x}^{2}+1 \right ) \ln \left ( ax+i \right ) }{{a}^{4}{c}^{2}}}+{\frac{{\frac{i}{8}} \left ( \ln \left ( ax+i \right ) \right ) ^{2}}{{a}^{4}{c}^{2}}}+{\frac{{\frac{i}{4}}\ln \left ( ax+i \right ) \ln \left ({\frac{i}{2}} \left ( ax-i \right ) \right ) }{{a}^{4}{c}^{2}}}+{\frac{{\frac{i}{4}}{\it dilog} \left ({\frac{i}{2}} \left ( ax-i \right ) \right ) }{{a}^{4}{c}^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*arctan(a*x)/(a^2*c*x^2+c)^2,x)

[Out]

1/2/a^4/c^2*arctan(a*x)*ln(a^2*x^2+1)+1/2*arctan(a*x)/a^4/c^2/(a^2*x^2+1)-1/4*x/a^3/c^2/(a^2*x^2+1)-1/4*arctan
(a*x)/a^4/c^2+1/4*I/a^4/c^2*ln(a^2*x^2+1)*ln(a*x-I)-1/8*I/a^4/c^2*ln(a*x-I)^2-1/4*I/a^4/c^2*ln(a*x-I)*ln(-1/2*
I*(a*x+I))-1/4*I/a^4/c^2*dilog(-1/2*I*(a*x+I))-1/4*I/a^4/c^2*ln(a^2*x^2+1)*ln(a*x+I)+1/8*I/a^4/c^2*ln(a*x+I)^2
+1/4*I/a^4/c^2*ln(a*x+I)*ln(1/2*I*(a*x-I))+1/4*I/a^4/c^2*dilog(1/2*I*(a*x-I))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3} \arctan \left (a x\right )}{{\left (a^{2} c x^{2} + c\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arctan(a*x)/(a^2*c*x^2+c)^2,x, algorithm="maxima")

[Out]

integrate(x^3*arctan(a*x)/(a^2*c*x^2 + c)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{x^{3} \arctan \left (a x\right )}{a^{4} c^{2} x^{4} + 2 \, a^{2} c^{2} x^{2} + c^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arctan(a*x)/(a^2*c*x^2+c)^2,x, algorithm="fricas")

[Out]

integral(x^3*arctan(a*x)/(a^4*c^2*x^4 + 2*a^2*c^2*x^2 + c^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{\int \frac{x^{3} \operatorname{atan}{\left (a x \right )}}{a^{4} x^{4} + 2 a^{2} x^{2} + 1}\, dx}{c^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*atan(a*x)/(a**2*c*x**2+c)**2,x)

[Out]

Integral(x**3*atan(a*x)/(a**4*x**4 + 2*a**2*x**2 + 1), x)/c**2

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3} \arctan \left (a x\right )}{{\left (a^{2} c x^{2} + c\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*arctan(a*x)/(a^2*c*x^2+c)^2,x, algorithm="giac")

[Out]

integrate(x^3*arctan(a*x)/(a^2*c*x^2 + c)^2, x)